皮秒参数测量系统中聚焦特性的在线诊断方法

杨 琳1* 刘代中1 陈 能1 明² 唐顺兴¹ 欧阳小平1

朱 俭² 朱宝强¹ 朱健强¹

(¹中国科学院上海光学精密机械研究所联合实验室,上海 201800) ²中国工程物理研究院上海激光等离子体研究所,上海 201800)

摘要 聚焦特性是一项非常重要的技术指标,它直接决定着激光装置的峰值功率密度。提出了一种大口径、高能 量激光的聚焦特性诊断方法,可用于实现皮秒拍瓦激光系统的聚焦特性在线诊断功能。该方法设计了基于长焦距 透镜法的高精度、低误差的远场测量单元,然后通过焦斑测量单元的测试数据来校验远场测量单元,最后提供皮秒 拍瓦激光聚焦特性的实时诊断功能。实验结果表明,远场测量单元和焦斑测量单元的测试数据之间的相似度接近 于1。因此,可以通过远场测量单元的测试数据,结合皮秒拍瓦激光的能量、脉宽数据,实现物理实验过程中的峰值 功率密度实时监测功能。

关键词 激光光学;激光束特征;高能激光;超快激光 doi: 10.3788/CJL201441.0202004 中图分类号 TN247 文献标识码 A

A Method of Online Diagnosing for Focusing Performance in **Picosecond Parameter Measurement System**

Hua Neng¹ Yang Lin¹ Liu Daizhong¹ Ouvang Xiaoping¹ Chen Ming²

Tang Shunxing¹ Liu Chong¹ Zhu Jian² Zhu Baoqiang¹ Zhu Jianqiang¹

¹ Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

² Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China

Abstract Focusing performance is an important parameter to improve peak power intensity of a laser facility. This paper provides a diagnostic method of focusing performance in order to realize a function of online diagnosing for focusing performance in petawatt laser. A high preciseness and low tolerance far-field diagnostics unit is designed in this method. Then measurement data is testified by a focal spot measurement unit in target room. At last the far-field diagnostics unit can be used to prove online diagnosing for focusing performance in petawatt laser. Experimental result shows that similarity between the far-field diagnostics unit and the focal spot measurement unit is about 1. So measurement data of far-field diagnostics unit can be used to diagnose peak power intensity with energy data and pulse width data when online diagnosing of peak power intensity in physics experiments is realized.

Key words laser optics; laser beam characterization; high-intensity lasers; ultrafast lasers OCIS codes 140.3295; 320.7090

1 弓[言

皮秒参数测量系统可用于诊断皮秒拍瓦激光的

输出脉冲参数,监测拍瓦激光系统的运行状态,确保 最终技术指标的实现。聚焦功率密度是拍瓦激光的

收稿日期: 2013-06-25; 收到修改稿日期: 2013-09-01

基金项目:国家自然科学基金(11204330)

作者简介:欧阳小平(1980—),男,博士,副研究员,主要从事高功率激光参数测量方面的研究。

E-mail: oyxp@siom.ac.cn

* 通信联系人。E-mail: axiulowt@hotmail.com

一项重要技术指标,预期将达到 10²⁰ W/cm²。聚焦 功率密度的计算,将依据拍瓦激光的输出能量、脉冲 宽度以及聚焦焦斑大小进行分析。针对拍瓦激光的 皮秒参数测量系统中的输出能量和脉宽宽度的诊断 功能,已经在 2012 年得到了验证^[1-3]。

高功率激光聚焦特性诊断技术研究的传统方法 为长焦距透镜法,为了提高远场测量的动态范围,又 陆续发展了纹影法、列阵相机法、Rattle Pair 法、正 交光楔法等若干种方法^[4-8]。纹影法要求激光束聚 焦焦斑的空间位置随机抖动小,对光束控制系统提 出了较高的要求。列阵相机法中的两对光楔均在聚 焦透镜之后,Rattle Pair 法中的一对光楔位于聚焦 透镜之后,这都会产生像差,影响测量结果的准确 度。正交光楔法中的一对光楔位于聚焦透镜之前, 聚焦透镜之后没有产生像差的光楔。皮秒参数测量 系统位于拍瓦激光系统的取样光路中,与主光路中 进入靶室聚焦的打靶用光束经过的光学元件种类和 数量均有差别。为了分析该差别所引入的系统误 差,实现拍瓦激光聚焦特性的在线诊断功能, (OMEGA EP)装置上研制了焦斑测量单元(FSM) 和基于波前传感器的远场测量单元(FSD),通过焦 斑测量单元的直接测量数据校验远场测量单元的间 接测量数据^[9]。其远场测量单元的工作原理,是通 过波前传感器测量被测脉冲的波前信息,然后反推 出远场分布特性。通过精密可靠的光学设计和调试 过程,OMEGA EP 装置上的焦斑测量单元和远场 测量单元之间的相似度可达(95±2)%^[10]。

在神光 II 升级过程中,皮秒拍瓦激光系统的离 轴抛物面镜配置了焦斑监测单元,能够实现焦斑聚 焦特性的直接分析和测量。考虑到皮秒拍瓦激光系 统的啁啾特性,本文提出了设计基于长焦距透镜方 法的高精度、低误差的远场测量单元,通过焦斑测量 单元的环围能量曲线标定和校验远场测量单元的环 围能量曲线,提供皮秒拍瓦激光聚焦特性的在线诊 断功能。

2 原理和方法

在皮秒参数测量系统中,为了匹配皮秒参数诊断 系统的能量、脉宽、信噪比等各个功能模块的输入光 束,需要采用缩束系统,将被测的大口径、高能量的皮 秒拍瓦激光束转换为小口径、低能量的诊断用光束。 能量的变换和衰减通过高反射率介质膜的剩余透过 部分,以及专用的衰减片实现。光束的口径变换,通 过缩束系统实现。所采用的技术方案如图1所示。 被测的大口径(\$20 mm)、高能量(~1000 J)皮秒拍 瓦激光经过分光镜 M₁ 之后,经过导光反射镜 M₂,入 射到靶室中的离轴抛物面镜上,由焦点位置的焦斑测 量单元(FSM)进行直接分析和测量。分光镜 M₁ 上 的透射部分进入远场测量单元。在远场测量单元 (FSD)中,被测光束经过透镜 L₁、L₂ 组成的缩束系统 之后,变换为 \$40 mm 的诊断光束。该诊断光束经过 远场成像透镜 L₈ 入射到远场测量用的高动态范围科 学级 CCD 上,采用数字图像处理软件进行分析。

图 1 聚焦特性在线诊断方案 Fig. 1 Schematic of online diagnosing for focusing performance

为了实现皮秒拍瓦激光聚焦特性的精密诊断和 分析,需要设计高精度、低误差的远场测量单元。皮 秒拍瓦激光属于高斯光束的一种,在高斯光束的传 输过程中,其束腰尺寸 ω_0 、传输距离z、z位置的光束 尺寸 $\omega(z)$ 、波长 λ 之间的关系为

$$\omega^{2}(z) = \omega_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi \omega_{0}^{2}} \right)^{2} \right].$$
(1)

经过透镜变换之后,高斯光束的束腰尺寸 ω'_0 与 入射到透镜之前的高斯光束的束腰尺寸 ω_0 、传输距 离 z、波长 λ 、焦距f之间的关系为

$$\omega_0^{\prime 2} = \frac{\omega_0^2}{(1 - z/f)^2 + \pi^2 \omega_0^4 / \lambda^2 f^2}.$$
 (2)

在远场测量单元和焦斑测量单元的比较中,环 围能量曲线描述的是焦平面上二维图像的光强分布 特性,它与远场发散角密切相关。因此在远场测量 单元的设计中,将通过远场发散角的变换误差来研 究系统误差的大小。高斯光束的远场发散角 θ ,定 义为高斯光束传输到无穷远处时,高斯光束的半径 $\omega(z) 与 z 轴的夹角,即$

$$\theta = \lim_{z \to \infty} \frac{\omega(z)}{z} = \lim_{z \to \infty} \sqrt{\frac{\omega_0^2}{z^2} + \left(\frac{\lambda}{\pi\omega_0}\right)^2} = \frac{\lambda}{\pi\omega_0}.$$
 (3)

因此,在图1所示的远场测量单元中,分别定义 入射的高斯光束的束腰为 ω₀₁,距离缩束系统主透镜 L₁距离为 z₁,发散角为 θ₀₁,经过缩束系统主透镜 L₁ 后的束腰为 ω'_{01} ,发散角为 θ'_{01} ,经过缩束系统副透镜 L₂之后的束腰为 ω'_{02} ,发散角为 θ'_{02} 。经过远场成像透 镜 L₃之后的束腰为 ω'_{03} ,发散角为 θ'_{03} 。主透镜 L₁的 焦距为 f_1 ,副透镜 L₂的焦距为 f_2 ,远场成像透镜 L₃ 的焦距为 f_3 。

根据(3)式可以得到如下关系:

 $\theta_{01}\omega_{01} = \theta'_{01}\omega'_{01} = \theta'_{02}\omega'_{02} = \lambda/\pi.$ (4)

可以看出,发散角 θ 与高斯光束束腰 ω 的乘积为一 常数 λ/π。下面将分析基于缩束系统的远场诊断单 元的工作性能。

2.1 缩束系统的主透镜 L₁ 聚焦过程

在皮秒参数测量系统中,入射高斯光束的束腰 位置为第9路主放大链的像传递位置,即自适应光 学的变形镜位置。在此之后的光路中,为4块压缩 光栅、3块导光反射镜和1块取样反射镜。将(2)式 对焦距 *f*₁ 求导,得到

$$\frac{\partial \omega_{01}'}{\partial f_1} = \omega_{01} \frac{z_{01}^2 + z_1 (z_1 - f_1)}{\left[z_{01}^2 + (z_1 - f_1)^2\right]^{3/2}},$$
 (5)

式中 z_{01} 为入射的高斯光束的瑞利长度, $z_{01} = \pi\omega_{01}^2/\lambda_0 z_1$ 为缩束系统主透镜 L_1 与变形镜之间的距离。从(5) 式可以分析焦距 f_1 的如下三种情况。

1) $f_1 = z_1 [1 + (z_{01}/z_1)^2] = R(z_1)$ 时, ω'_0 取得极大值, $R(z_1)$ 为高斯光束入射到主透镜表面处的曲率半径。

2) $f_1 < R(z_1)$ 时, ω'_{01} 随着 f_1 的减小而单调减 小。当 $f_1 = R(z_1)/2$ 时, $\omega'_{01} = \omega_{01}$ 。因此,只有 $f_1 < R(z_1)/2$ 时,主透镜才对高斯光束有会聚作用。

3) $f_1 > R(z_1)$ 时, ω'_{01} 随着 f_1 的增加而单调减 小。当 $f_1 \rightarrow \infty$ 时, $\omega'_{01} \rightarrow \omega_{01}$,即透镜对于高斯光束没 有会聚作用。

综合上述情况,考虑到第9路的波面 $R(z_1)$ 约为 3000~5000 m,主透镜的焦距 f_1 必须小于 1500 m。

2.2 缩束系统的副透镜 L₂ 准直过程

进入副透镜 L₂ 之前的高斯光束的束腰为 ω'_{01} , 发散角为 $\theta'_{01} = \lambda/\pi\omega'_{01}$,瑞利长度为 $z'_{01} = \pi\omega'_{01}^2/\lambda$ 。离 开副透镜的高斯光束的束腰为 ω'_{02} ,发散角为 $\theta'_{02} = \lambda/\pi\omega'_{02}$ 。可以发现,当束腰 ω'_{02} 达到最大时,发散角 θ'_{02} 取得最小值。将(2) 式对距离 z_2 求导,得到

$$\frac{\partial \omega_{02}}{\partial z_2} = \frac{\omega_{01}' f_2 (f_2 - z_2)}{[z_{01}^2 + (z_2 - f_2)^2]^{3/2}}.$$
 (6)

可以发现,当 $z_2 = f_2$ 时,离开副透镜的高斯光束的束腰最大值为

$$\boldsymbol{\omega}_{02\max}^{\prime} = \lambda f_2 / \pi \boldsymbol{\omega}_{01}^{\prime}. \tag{7}$$

根据(2),(7)式,得到缩束系统对于高斯光束发

散角的放大率 M_ℓ 与主透镜位置 z₁ 的关系为

$$M_{\theta} = \frac{\theta_{02}'}{\theta_{01}} = \frac{\omega_{01}'}{\omega_{02}'} \frac{\omega_{01}}{\omega_{01}'} = \frac{\pi \omega_{01}^2}{\lambda f_2} \left(\sqrt{\left(1 - \frac{z_1}{f_1}\right)^2 + \frac{\pi^2 \omega_{01}^4}{\lambda^2 f_1^2}} \right)^{-1}.$$
 (8)

在模拟分析中,主透镜 L₁ 焦距 f_1 为 8.8 m,副透 镜 L₂ 焦距 f_2 为 1.1 m, z_1 为焦距 f_1 的倍数,即 $z_1 = nf_1$,n 为 1 到 20 之间的正数,波长 λ 取 1053 nm。从 而可以计算得到 z_1 与放大率 M_{θ} 的误差 $\delta = (M_{\theta} - f_1/f_2) \times 100\%$ 之间的关系,如图 2 所示。图 2 中还 分析了束腰分别为 320、32、25 mm 的情况。从图 2 中 可以看出,放大率 M_{θ} 误差随着 z_1 的增加而增大,但 是随着束腰的增大而减小。当束腰为 320 mm时,误 差小于 0.01%。当束腰为 32 mm 时,误差小于 0.15%。当束腰为25 mm时,误差小于0.4%。对于 拍瓦激光系统 ϕ 320 mm 的束腰尺寸,为了将误差控 制在 0.1%以内,需要 $z_1 \leq 20$ f_1 。

同样,根据(2)式,可以得到缩束系统对于高斯 光束发散角的放大率 *M*₀ 与副透镜位置 *z*₂ 的关系

$$M_{\theta} = \frac{\theta_{02}'}{\theta_{01}} = \frac{\omega_{01}'}{\omega_{02}'} \frac{\omega_{01}}{\omega_{01}'} = \omega_{01} \sqrt{\frac{\Delta z_2^2}{\omega_{01}'^2} + \frac{\pi^2 \omega_{01}'^2}{\lambda^2 f_2^2}}, \quad (9)$$

 $\vec{x} \neq \omega_{01}' = \sqrt{\frac{\omega_{01}^2}{(1 - z_1/f_1)^2 + \pi^2 \omega_{01}^4/\lambda^2 f_1^2}}, \Delta z_2 = 1 - \frac{\omega_{01}}{(1 - z_1/f_1)^2 + \pi^2 \omega_{01}^4/\lambda^2 f_1^2}$

 z_2/f_2 ,表示 z_2 的调试误差。

根据图 2 的模拟结果,缩束系统与变形镜的位置 z_1 选择为 50 m,主透镜 L₁ 焦距 f_1 和副透镜 L₂ 焦距 f_2 的焦距之比为 8:1。根据(9)式可以得到副 透镜位置 L₂ 的调试误差 Δ z_2 与放大率误差 δ = $(M_{\theta} - f_1/f_2) \times 100\%$ 之间的关系如图 3 所示。图 3 中还分析了束腰分别为 320、160、80 mm 的情况。 从图 3 中可以看出,放大率误差 δ 随着调试误差 Δ z_2 的增加而增大,而且也随着束腰的增大而增大。 在 Δ z_2 从 0.1×10⁻⁵变化到 2×10⁻⁵过程中,当束腰 为 320 mm 时,误差小于 0.4%;当束腰为 160 mm 时,误差小于 0.03%;当束腰为80 mm时,误差小于 0.01%。在皮秒拍瓦激光系统中,为了能够在 ϕ 320 mm的束腰情况下将误差控制在0.1%以内, z_2 的调试误差 $\Delta z_2 = 1 - z_2/f_2$ 应当小于等于 1× 10^{-5} ,即 10 μ m。因此在皮秒参数测量系统的远场 测量单元的光路调试中,需要采用的测微丝杆的精 度为 10 μ m。

图 3 缩束系统副透镜的调试误差对角放大率的影响 Fig. 3 Influence of adjusting tolerance of down-collimator's second lens on angle magnification

3 实验分析

根据上述分析结果,在图1的光路排布中,皮秒

拍瓦激光系统的像传递面与远场测量单元的缩束系 统主透镜的距离 z_1 设计为 50 m,缩束系统的调试 精度设计为 10 μ m,再结合剪切干涉仪实现缩束系 统输出光束平行度的监测,最终确保缩束系统输出 的诊断光束的发散角 θ_{01} 与入射的被测光束的发散 角 θ'_{02} 之间的倍率 M_{θ} 近似等于平行光束的放大率 $M = f_1/f_2$,系统的组合误差小于 0.14%。在此条 件下,远场测量单元的光学系统可以依据平行光束 的原理进行简化分析。

入射到缩束系统的被测光束的束腰为 ω_{01} ,对应的艾里斑的发散角为 $\theta_{Ariy1} = 2.44\lambda/\omega_{01}$;当发散角为 θ_{01} 时,其聚焦焦斑与艾里斑的比值为

$$T_1 = \theta_1 / \theta_{\text{Ariy1}} = \theta_1 \omega_{01} / 2.44\lambda.$$
(10)

缩束系统出射的诊断光束的束腰为 ω'_{02} ,对应的 艾里斑的发散角为 $\theta_{Ariy2} = 2.44\lambda/\omega'_{02}$;当发散角为 θ'_{02} 时,其聚焦焦斑与艾里斑的比值为

$$T_2 = \theta'_{02}/\theta_{\text{Ariy}2} = \theta'_{02}\omega'_{02}/2.44\lambda.$$
 (11)

根据(3)式可以知道 $T_1 = T_2$ 。这说明经过高精 度、低误差的缩束系统之后,诊断光束的衍射极限倍 率等于入射的被测光束的衍射极限倍率,即聚焦特 性不发生变化。在忽略反射镜和透镜的面形误差的 前提下,在图1中采用远场成像透镜 L₃得到的焦斑 分布情况,就等于入射的被测脉冲的焦斑分布情况。 实验结果如图4所示。

图 4 (a) 远场测量单元测试数据;(b) 环围能量曲线 Fig. 4 (a) Measurement data of far-field diagnostics; (b) encircle energy curve

在远场测量单元的测试数据如图 4 所示,当钕 玻璃放大链输出能量为 90 J 时,拍瓦激光的 50%环 围能量半径为 5.1DL(衍射极限)。焦斑测量单元 的测试结果(图 5)中,当钕玻璃放大链不工作时,其 50%环围能量半径为 4.0DL;当钕玻璃放大链输出 能量为 90 J 时,拍瓦激光的 50%环围能量半径为 5.1DL。实验结果表明,该高精度、低误差的远场测 量单元,与焦斑测量单元的测试数据之间具有非常 好的相似度。

4 结 论

为了实现拍瓦激光系统的聚焦特性在线诊断功 能,皮秒参数测量系统设计了基于长焦距透镜的高 精度、低误差的远场测量单元,并基于靶室中的焦斑 测量单元实现了性能标定和校验。该方案通过分析 高斯光束在缩束系统中的传输特性,得到了高斯光 束发散角的变化规律,为抑制系统误差提供了重要 的参考意义。实验结果表明,该远场测量单元的测

图 5 焦斑测量单元的在线测量数据。(a) 焦斑测量单元测试数据;(b) 环围能量曲线

Fig. 8 Online measurement data of focal spot measurement. (a) Measurement data of focal

spot measurement; (b) encircle energy curve

试数据与焦斑测量单元的测试数据之间的一致性非 常好,相似度接近1。当拍瓦激光系统用于物理实 验时,焦斑测量单元无法提供在线的聚焦特性诊断。 通过该实验完成数据对比和标定功能之后,可以通 过皮秒参数测量系统中的远场测量单元提供皮秒拍 瓦激光的聚焦特性的在线诊断和实时分析。在下一 步的工作中,期望能够将远场测量单元和焦斑测量 单元的环围能量曲线提取出来,在同一坐标系下实 现高精度的精细比较和分析。

致谢 感谢戴亚平、谢兴龙、沈卫星、朱海东、韦辉、 李朝阳、季来林等人在方案讨论和实验中给予的 帮助

参考文献

- Ouyang Xiaoping, Yang Lin, Peng Yonghua, et al.. Analysis on reliability of diagnostics system for picosecond petawatt laser[J]. Chinese J Lasers, 2013, 40(1): 0108003.
 欧阳小平,杨 琳,彭永华,等.皮秒拍瓦激光的参数测量系统
 - 可靠性分析[J]. 中国激光, 2013, 40(1): 0108003.
- 2 Ouyang Xiaoping, Yang Lin, Peng Yonghua, et al.. Research on precise diagnostics for picosecond single shot pulse[J]. Chinese J Lasers, 2012, 39(4): 0408003.

欧阳小平,杨 琳,彭永华,等.皮秒自相关仪的性能测试研究 [J].中国激光,2012,39(4):0408003.

3 Xiaoping Ouyang, Jingui Ma, Lin Yang, et al.. Accuracy of single-shot autocorrelation measurements of petawatt laser pulses [J]. Appl Opt, 2012, 51(18): 3989-3994. 4 Zhi Tingting, Huang Kuixi, Lin Zunqi, *et al.*. Laser far field CCD diagnostic device [J]. Laser & Optoelectrics Progress, 1997, 34(4): 29-35.

支婷婷,黄奎喜,林尊琪,等.激光远场 CCD 诊断仪[J].激光与光电子学进展,1997,34(4):29-35.

- 5 He Ling, Chen Bo, Liu Hua, *et al.*. Experimental investigation in far-field test technique for high power laser output[J]. High Power Laser and Particle Beams, 2003, 15(3): 245-248.
 何 凌,陈 波,刘 华,等. 激光远场焦斑测试技术的实验研 究[J]. 强激光与粒子束, 2003, 15(3): 245-248.
- 6 Xie Xudong, Chen Bo, He Ling, *et al.*. Algorithm research on focal spot reconstruction for high power laser output[J]. High power laser and particle beams, 2003, 15(3): 237-240. 谢旭东,陈 波,何 凌,等. 强激光远场焦斑重构算法研究[J]. 强激光与粒子束, 2003, 15(3): 237-240.
- 7 Cheng Juan, Qin Xingwu, Chen Bo, *et al.*. Experimental investigation on focal spot measurement by schliren method[J]. High Power Laser and Particle Beams, 2006, 18(4): 612-614.
 程 娟,秦兴武,陈 波,等. 纹影法测量远场焦斑实验研究[J]. 强激光与粒子束, 2006, 18(4): 612-614.
- 8 He Yuanxing, Li Xinyang. Far-field focal spot measurement method based on orthogonal wedges[J]. High Power Laser and Particle Beams, 2012, 24(11): 2543-2548. 贺元兴, 李新阳. 正交光楔激光远场焦斑测量方法[J]. 强激光 与粒子束, 2012, 24(11): 2543-2548.
- 9 Bromage J Bahk, S W Irwin, D Kwiatkowski, et al.. A focalspot diagnostic for on-shot characterization of high-energy petawatt lasers[J]. Opt Express, 16(21): 16561-16572.
- 10 B E Kruschitz, S W Bahk, J Bromage, *et al.*. Conference on lasers an electro-optics [C]. Optical Society of America, 2010. JThE113.

栏目编辑:宋梅梅